SALMON-SAFE INC.

MODEL STORMWATER MANAGEMENT GUIDELINES FOR ULTRA-URBAN REDEVELOPMENT

MAY 2018

Introduction

Polluted stormwater is the largest threat to the health of the Pacific Northwest's urban watersheds. Pollutants targeted by Salmon-Safe's urban initiative such as heavy metals, petroleum products, pesticide runoff and construction sediment have an adverse impact on the watershed and severely compromise downstream marine health. With the goal of inspiring design that has a positive impact in our watersheds, Salmon-Safe offers stormwater design guidance for ultra-urban areas, which we define as typically those densely developed "downtown" locations mostly covered by structures and pavement. Generally first developed long ago, many such areas are brownfields now undergoing redevelopment, mostly for commercial and residential purposes.

The very extensive impervious surfaces in ultra-urban spaces create a hydrologic environment dominated by surface runoff, with little of the soil infiltration and evapotranspiration predominating in a natural landscape. Vehicle traffic drawn to such areas and the activities occurring there deposit contaminants like heavy metals, oils and other petroleum derivatives, pesticides and fertilizers (nutrients). These pollutants wash off of the surfaces with the stormwater runoff and drain into the piping typically installed to convey water away rapidly. If the piping network is a combined sanitary-storm sewer system, the large stormwater runoff volumes draining from an ultra-urban area exceed the capacity of the wastewater treatment plant at the end of the line in some storms, resulting in releases of untreated, mixed sewage and stormwater to a water body. If the piping network is a separated storm sewer system, the runoff and the pollutants it carries enter a receiving water body without treatment, to the detriment of water quality and the aquatic life there. Although salmon-spawning and rearing streams are rarely present in an ultra-urban location, if they are, the elevated runoff quantity itself is damaging to the downstream habitat that salmon and their food sources rely on and directly to the fish themselves.

Many of the pollutants conveyed by stormwater runoff are toxic to salmon and their invertebrate food sources. The toxicity of heavy metals like copper and zinc to aquatic life has been well studied. However, salmon face many more potentially toxic pollutants in both their freshwater and saltwater life stages. These contaminants include other heavy metals; petroleum products; combustion by-products; and industrial, commercial, and household chemicals. Emerging science from NOAA Fisheries shows that these agents collectively create both lethal and non-lethal impacts, the latter negatively affecting salmon life-sustaining functions to the detriment of their migration, reproduction, feeding, growth and avoidance of predators.

Salmon-Safe Inc. 1001 SE Water Ave, Suite 450 Portland, OR 97214 (503) 232-3750 info@salmonsafe.org

www.salmonsafe.org

Despite these challenges, an array of options exists to reduce, or even in the utmost application, eliminate the negative impacts of ultra-urban development stemming from the large quantities of contaminated stormwater runoff potentially generated there. This management category addresses practices to control ultra-urban stormwater runoff to reduce both water quantity and water quality impacts with the following goal.

Goal

Any development or redevelopment project with a footprint that exceeds 5,000 square feet shall use low-impact site planning, design, and operational strategies¹ for the property to maintain or restore, to the maximum extent technically feasible, the predevelopment hydrology of the property with regard to the water quality, rate, volume, and duration of flow.

Objectives

1. Prime objective

Implement low-impact practices, especially runoff retention² practices, addressing both water quantity and water quality control to the maximum extent technically feasible in redeveloping ultra-urban parcels to achieve the stated goal of restoring the predevelopment hydrology. Provide documentation of how the objective will be achieved. If full achievement of the goal is technically infeasible, assemble documentation demonstrating why it is not and proceed to consider Objective 2A and/or 2B, as appropriate to the site.

2. Alternative objectives

Assess if achieving Objective 1 is documented to be technically infeasible.

2A Alternative water quantity control objective when the site discharges to a combined sanitary-storm sewer or a stream—Start with the low-impact practices identified in the assessment pursuant to Objective 1. To the extent that they cannot prevent the generation of stormwater runoff peak flow rates and volumes greater than in the predeveloped condition^{3,4}, implement effective alternative measures to diminish and/or slow the release of runoff to the maximum extent technically feasible, with the minimum objective of reducing the quantity discharged to comply with any applicable water quantity control requirement⁵ and, in any case, below the amount released in the preceding developed condition.⁶

⁶ As determined through hydrologic modeling of the previously developed and modified conditions.

¹Collectively termed "low-impact practices" in the following points.

² Retention means keeping runoff from flowing off the site on the surface by preventing its generation in the first place, capturing it for a water supply purpose, releasing it via infiltration to the soil or evapotranspiration to the atmosphere, or some combination of these mechanisms.

³ A predeveloped condition is the natural state of the site as it typically would be for the area prior to any modification of vegetation or soil.

⁴ As determined through hydrologic modeling of the previously developed and modified conditions.

⁵ Specified for discharges to combined sewers by the municipal jurisdiction; specified for discharges to Western Washington streams by the Washington Department of Ecology's Stormwater Management Manual for Western Washington, Minimum Technical Requirement #7.

2B Alternative water quality control objective when the site discharges to a water body or a separate storm sewer leading to a water body—Start with the low-impact practices identified in the assessment pursuant to Objective 1. To the extent that they cannot prevent the generation of stormwater runoff containing pollutants, implement alternative effective measures to reduce contaminants in stormwater to the maximum extent technically feasible, with the minimum objective of complying with the regulatory requirements for water quality control applying to the location.⁷

Plan Elements

- Inventory and analysis—Narrative, mapping, data, and quantitative results that summarize:

 site land uses and land covers in the redeveloped and preceding developed conditions;
 results of hydrologic modeling of the undeveloped, previously developed and modified conditions, as the basis for pursuing quantity control objectives; and (3) stormwater drainage sub-basins, conveyance routes, and locations of receiving stormwater drains and natural water bodies in the redeveloped state.
- 2. Low-impact practices—Low-impact practices are systematic methods intended to reduce the quantity of stormwater runoff produced and improve the quality of the remaining runoff by controlling pollutants at their sources, collecting precipitation and putting it to a beneficial use, and utilizing or mimicking the hydrologic functioning of natural vegetation and soil in designing drainage systems.

The following low-impact practices are particularly relevant to ultra-urban sites:

- source control practices
 - $\checkmark~$ minimizing pollutant introduction by building materials (especially zincand copper-bearing) and activities conducted on the site
 - ✓ isolating pollutants from contact with rainfall or runoff by segregating, covering, containing, and/or enclosing pollutant-generating materials, wastes and activities
 - \checkmark conserving water to reduce non-stormwater discharges
- constructing vehicle travel ways, sidewalks and uncovered parking lot aisles to the minimum widths necessary, provided that public safety and a walkable environment for pedestrians are not compromised
- harvesting precipitation and putting it to a use such as irrigation, toilet flushing, vehicle or surface washing, or cooling system make-up water
- constructing low-traffic areas with permeable surfaces, such as porous asphalt, open-graded Portland cement concrete, coarse granular materials, concrete or plastic unit pavers, and plastic grid systems (Areas particularly suited for permeable surfaces

⁷ In Western Washington, specified by the Washington Department of Ecology's Stormwater Management Manual for Western Washington, Minimum Technical Requirement #6, which is equivalent to the City of Seattle's SMC, Section 22.805.090.B.1.a.

are driveways, walkways and sidewalks, alleys, and overflow or otherwise lightly-used uncovered parking lots not subject to much leaf fall or other deposition.)

- draining runoff from roofs, pavements, other impervious surfaces, and landscaped areas into one or more of the following green stormwater infrastructure (GSI) systems:
 - \checkmark bioretention area* (also known as a rain garden)⁸
 - \checkmark planter box*, tree pit* (bioretention areas on a relatively small scale)
 - $\sqrt{}$ vegetated swale⁹*
 - $\sqrt{}$ vegetated filter strip*
 - \checkmark infiltration trench
 - √ green roof
 - * signifies compost-amended soils as needed to maximize soil storage and infiltration

The following low-impact practices are of limited applicability to ultra-urban sites but may contribute to meeting objectives in some circumstances:

- conserving natural areas including existing trees, other vegetation and soils
- minimizing soil excavation and compaction and vegetation disturbance
- minimizing impervious rooftops and building footprints
- designing drainage paths to increase the time before runoff leaves the site by emphasizing sheet instead of concentrated flow, increasing the number and lengths of flow paths, maximizing non-hardened drainage conveyances and maximizing vegetation in areas that generate and convey runoff
- **3.** Alternatives—When on-site low-impact practices alone cannot achieve Objectives 2A and/or 2B, implement one or more of the following strategies to meet at least the minimum water quantity and quality control objectives stated above:
 - For runoff quantity and/or quality control—
 - ✓ contribute materially to a neighborhood project using low-impact practices and serving the stormwater control needs of multiple properties in the same receiving water drainage basin, with the contribution commensurate with the shortfall in meeting objectives on the site itself.
 - ✓ implement low-impact practices on-site to manage the quantity and quality of stormwater generated in a location off the redevelopment site but in the same receiving water drainage basin, with the scope of the project commensurate with the shortfall in meeting objectives using practices applied to stormwater generated by the site itself.

^{8,9}Preferably with an open bottom for the fullest infiltration, but with a liner and underdrain if the opportunity for deep infiltration is highly limited or prohibited for some specific reason, e.g., bedrock or seasonal high-water table near the surface, very restrictive soil (e.g., clay, silty clay) that cannot be adequately amended to permit effective infiltration, non-remediable contamination below ground in the percolating water pathway.

- For runoff quantity control—install a vault or tank¹⁰ to store water for delayed release after storms to help avoid combined sewer overflows or high flows damaging to a stream.
- For runoff quality control—install an advanced engineered treatment system suitable for an ultra-urban site.¹¹

Considerations for Salmon-Safe Certification

Fulfilling the stormwater component of the Salmon-Safe certification process requires submission of documentation of how Objective 1 will be achieved based on the inventory and analysis conducted for the site. On the other hand, if Objective 1 has been judged to be unachievable, pursuing certification requires documentation establishing the technical infeasibility of doing so. Relevant documentation includes, but is not necessarily limited to, site data, calculations, modeling results, and qualitative reasoning. If achieving Objective 1 is demonstrably technically infeasible, the certification process then requires similar documentation of how Objectives 2A and/or 2B, as appropriate to the site, will be achieved.

Prepared for Salmon-Safe Inc. by Dr. Richard Horner, et. al.

¹¹ The most effective candidate treatment systems now available are chitosan-enhanced sand filtration and advanced media filtration coupled with ion exchange and/or carbon adsorption. Basic sand filtration is another option suitable to an ultra-urban site but is less effective than the more advanced alternatives.

¹⁰ While useful for runoff quantity control, passive vaults and tanks provide very little water quality benefit.